Select Page

China supplier ISO9809-1 Standard 10L 20L 40L 47L 50L Stainless Steel Gas Cylinders with Industrial Gas Arogen Nitrogen vacuum pump adapter

Product Description

CYY ENERGY brand 10/20/40/47/50 liter oxygen nitrogen argon  gas cylinder with ISO9809-3 standard

Product Description:
Oxygen Gas Cylinder Specification:

1) Gas: Oxygen, Argon, Nitrogen 
2) Water Capacity: 50L 
3) Working Pressure: 150BAR /200BAR
4) Certifications: GB/DOT/TPED/CE/TC/UL

Oxygen Gas Cylinder Pics: 

Oxygen Gas Cylinder Production Process:

Oxygen Gas Cylinder Loading and Transporting:

Company Information:
1. CYY Energy is professional cylinder, storage tank, pump, air separation plant, LNG plant, cryogenic storage system and gas relevant equipments supplier. We provide the best service obsess over customer's demand. We believe our purpose is to create value for the customer. CHINAMFG Energy has advanced technical design ability, mature project management system, consummate and close-in after-sales service. Our production is widely used in steel, metallurgy, oil, chemical industry, machinery, environmental protection, electronic industry, medicine etc. So far, we have successfully delivered our equipments to all around the China, South-East Asia, Middle East, South America and Latin America. We have fostered a good company image all around the world.

2. Our products including CNG steel cylinder for vehicle, High pressure seamless steel gas cylinders, Fire-fighting cylinders, Accumulator shell and other cylinder products. The high pressure seamless steel gas cylinder can produced according to the standard such as ISO11439, ISO9809, JIS B8241, NZS5454, EN1964, DOT3AA, IS7285,GB17258,GB5099 and so on. CYY's products serve a wide application in automotive, chemical industries, firefighting, petro industries, energy, metallurgy, electronics, aerospace, nuclear energy and scientific research institute.

3. CYY has equipped with most advanced 2 pipe production lines with strongly technology, advance equipment and complete means on inspection. Our company can produce the max outside diameter of the pipe is 406mm. the annually capacity of CHINAMFG can be more than 350,000 cylinders and it will reach more than 1,000,000 cylinders after the new 5 production lines have been finished

4. CHINAMFG production and management are carried out by ISO9000 Quality Management System strictly and keep a good quality.

5. There are various kinds of gas cylinders for your choice and we can also design and manufacture any new type gas cylinder according to customers' requirement.

CYY Mission:
Supply the best Cryogenic Equipment and the relative services according to the customer's needs In the global market, which create famous brand for customers and keep the healthy development of the company and value added.
 

Service Positioning:
To challenge convention, meet market, perfect service and improve quality, CHINAMFG always places client supreme, and pursues service quality by implementing pre-sale service, during-sales service together with self-examination.

Welcome all clients to our company for visit!

Frequently Asked Questions:
Q1.What is the capacity of this gas cylinder?
A1.The Capacity of this gas cylinder is 50L.

Q2.What is the delivery time of this gas cylinder?
A2.The delivery of this gas cylinder is 30days after the deposit received.

Q3.What payment terms do you usually use?
A3.We accept TT, 30% as deposit and 70% before delivery.

Q4.What certification do you provide for clients?
A4.We have ASME, CE, DOT,TUV and TPED Certification of our products.
 
 
 
.

Oxygen Gas Cylinder Specficications:

Water Capacity 50L
Working Pressure 200bar
Outside Diameter 232mm
Empty Weight 60kg
Cylinder Height 1450mm
Wall Thickness 6.0mm
Head Protection Tulip Cap, Common Cap
Cylinder Color Blue or As Clients Require 
Cylinder Standard ISO9809-1
Cylinder Material 34CrMo4
Storage Gas 10 CuM3
Delivery Time Within 30 Days After Deposit Received

 
 
 

 
 
 
 
 
 

Material: Stainless Steel
Usage: Automation and Control
Structure: Gas - Liquid Damping Cylinder
Power: Hydraulic
Standard: Standard
Pressure Direction: Double-acting Cylinder
Customization:
Available

|

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved energy efficiency?

Advancements in hydraulic cylinder technology have led to significant improvements in energy efficiency, allowing hydraulic systems to operate more efficiently and reduce energy consumption. These advancements aim to minimize energy losses, optimize system performance, and enhance overall efficiency. Here's a detailed explanation of some key advancements in hydraulic cylinder technology that have improved energy efficiency:

1. Efficient Hydraulic Circuit Design:

- The design of hydraulic circuits has evolved to improve energy efficiency. Advancements in circuit design techniques, such as load-sensing, pressure-compensated systems, or variable displacement pumps, help match the hydraulic power output to the actual load requirements. These designs reduce unnecessary energy consumption by adjusting the flow and pressure levels according to the system demands, rather than operating at a fixed high pressure.

2. High-Efficiency Hydraulic Fluids:

- The development of high-efficiency hydraulic fluids, such as low-viscosity or synthetic fluids, has contributed to improved energy efficiency. These fluids offer lower internal friction and reduced resistance to flow, resulting in decreased energy losses within the system. Additionally, advanced fluid additives and formulations enhance lubrication properties, reducing friction and optimizing the overall efficiency of hydraulic cylinders.

3. Advanced Sealing Technologies:

- Seal technology has advanced significantly, leading to improved energy efficiency in hydraulic cylinders. High-performance seals, such as low-friction or low-leakage seals, minimize internal leakage and friction losses. Reduced internal leakage helps maintain system pressure more effectively, resulting in less energy waste. Additionally, innovative sealing materials and designs enhance durability and extend seal life, reducing the need for frequent maintenance and replacement.

4. Electro-Hydraulic Control Systems:

- The integration of advanced electro-hydraulic control systems has greatly contributed to energy efficiency improvements. By combining electronic control with hydraulic power, these systems enable precise control over cylinder operation, optimizing energy usage. Proportional or servo valves, along with position or force feedback sensors, allow for accurate and responsive control, ensuring that hydraulic cylinders operate at the required level of performance while minimizing energy waste.

5. Energy Recovery Systems:

- Energy recovery systems, such as hydraulic accumulators, have been increasingly utilized to improve energy efficiency in hydraulic cylinder applications. Accumulators store excess energy during low-demand periods and release it when there is a peak demand, reducing the need for the hydraulic pump to provide the full power continuously. By utilizing stored energy, these systems can significantly reduce energy consumption and improve overall system efficiency.

6. Smart Monitoring and Control:

- Advancements in smart monitoring and control technologies have enabled real-time monitoring of hydraulic systems, allowing for optimized energy usage. Integrated sensors, data analytics, and control algorithms provide insights into system performance and energy consumption, enabling operators to make informed decisions and adjustments. By identifying inefficiencies or suboptimal operating conditions, energy consumption can be minimized, leading to improved energy efficiency.

7. System Integration and Optimization:

- The integration and optimization of hydraulic systems as a whole have played a significant role in improving energy efficiency. By considering the entire system layout, component sizing, and interaction between different elements, engineers can design hydraulic systems that operate in the most energy-efficient manner. Proper sizing of components, minimizing pressure drops, and reducing unnecessary piping or valve restrictions all contribute to improved energy efficiency of hydraulic cylinders.

8. Research and Development:

- Ongoing research and development efforts in the field of hydraulic cylinder technology continue to drive energy efficiency advancements. Innovations in materials, component design, system modeling, and simulation techniques help identify areas for improvement and optimize energy usage. Additionally, collaboration between industry stakeholders, research institutions, and regulatory bodies fosters the development of energy-efficient hydraulic cylinder technologies.

In summary, advancements in hydraulic cylinder technology have resulted in notable improvements in energy efficiency. Efficient hydraulic circuit designs, high-efficiency hydraulic fluids, advanced sealing technologies, electro-hydraulic control systems, energy recovery systems, smart monitoring and control, system integration and optimization, as well as ongoing research and development efforts, all contribute to reducing energy consumption and enhancing the overall energy efficiency of hydraulic cylinders. These advancements not only benefit the environment but also offer cost savings and improved performance in various hydraulic applications.

hydraulic cylinder

Handling the Challenges of Minimizing Fluid Leaks and Contamination in Hydraulic Cylinders

Hydraulic cylinders face challenges when it comes to minimizing fluid leaks and contamination, as these issues can impact the performance, reliability, and lifespan of the system. However, there are several measures and design considerations that help address these challenges effectively. Let's explore how hydraulic cylinders handle the challenges of minimizing fluid leaks and contamination:

  1. Sealing Systems: Hydraulic cylinders employ advanced sealing systems to prevent fluid leaks. These systems typically include various types of seals, such as piston seals, rod seals, and wiper seals. The seals are designed to create a tight and reliable barrier between the moving components of the cylinder and the external environment, minimizing the risk of fluid leakage.
  2. Seal Material Selection: The choice of seal materials is crucial in minimizing fluid leaks and contamination. Hydraulic cylinder manufacturers carefully select seal materials that are compatible with the hydraulic fluid used and resistant to wear, abrasion, and chemical degradation. This ensures the longevity and effectiveness of the seals, reducing the likelihood of leaks or premature seal failure.
  3. Proper Installation and Maintenance: Ensuring proper installation and regular maintenance of hydraulic cylinders is essential for minimizing fluid leaks and contamination. During installation, attention should be given to proper alignment, torqueing of bolts, and adherence to recommended procedures. Regular maintenance includes inspecting seals, replacing worn-out components, and addressing any signs of leakage promptly. Proper maintenance practices help identify and rectify issues before they escalate and cause significant problems.
  4. Contamination Control: Hydraulic cylinders incorporate measures to control contamination and maintain fluid cleanliness. This includes the use of filtration systems, such as in-line filters, to remove particles and contaminants from the hydraulic fluid. Additionally, hydraulic reservoirs often have breathers and desiccant filters to prevent moisture and airborne contaminants from entering the system. By controlling contamination, hydraulic cylinders minimize the risk of damage to internal components and maintain optimal system performance.
  5. Environmental Protection: Hydraulic cylinders may be equipped with protective features to safeguard against external contaminants. For example, bellows or protective boots can be installed to shield the rod and seals from debris, dirt, or moisture present in the operating environment. These protective measures help extend the life of the seals and enhance the overall reliability of the hydraulic cylinder.

In summary, hydraulic cylinders employ sealing systems, appropriate seal materials, proper installation and maintenance practices, contamination control measures, and environmental protection features to handle the challenges of minimizing fluid leaks and contamination. By implementing these measures, manufacturers can ensure reliable and long-lasting hydraulic cylinder performance, minimize the risk of fluid leakage, and maintain the cleanliness of the hydraulic system.

hydraulic cylinder

What factors should be considered when selecting the right hydraulic cylinder for an application?

When selecting the right hydraulic cylinder for an application, several important factors need to be considered. These factors help ensure that the chosen hydraulic cylinder is suitable for the specific requirements of the application and will perform reliably. Here are the key factors to consider:

1. Load Requirements:

- One of the crucial factors to consider is the load requirement of the application. Determine the maximum load that the hydraulic cylinder needs to handle. Consider both the static load (when the cylinder is stationary) and the dynamic load (when the cylinder is in motion). The load requirement will impact the cylinder's bore size, rod diameter, and overall strength. Choose a hydraulic cylinder with a load capacity that exceeds the application's maximum load to ensure safety and longevity.

2. Stroke Length:

- The stroke length refers to the distance the hydraulic cylinder needs to extend and retract to perform the desired motion. Measure the required stroke length based on the application's operational requirements. It is essential to choose a hydraulic cylinder with a stroke length that matches or exceeds the required distance. Consider any potential variations or adjustments in the stroke length that may be needed in the future.

3. Operating Pressure:

- Consider the operating pressure required for the application. The hydraulic cylinder must be capable of withstanding the maximum pressure within the hydraulic system. Ensure that the selected cylinder has a pressure rating that exceeds the application's maximum operating pressure. This ensures safety and prevents premature failure.

4. Speed Requirements:

- Determine the required speed of the hydraulic cylinder's movement for the application. Consider both the extension and retraction speeds. Select a cylinder that can achieve the desired speed while maintaining precise control and stability. It is important to choose a cylinder that can handle the required speed without compromising performance or safety.

5. Mounting:

- Evaluate the available space and mounting requirements for the hydraulic cylinder. Consider the mounting type (such as flange, foot, trunnion, or clevis), the available mounting points, and any specific mounting constraints. Ensure that the selected cylinder can be easily and securely mounted in the desired location.

6. Environmental Factors:

- Assess the environmental conditions in which the hydraulic cylinder will operate. Consider factors such as temperature extremes, humidity, exposure to chemicals, dust, or corrosive substances. Choose a cylinder that is designed to withstand the specific environmental conditions of the application. This may involve selecting appropriate materials, coatings, or seals to ensure the longevity and performance of the cylinder.

7. Cylinder Configuration:

- Determine the appropriate cylinder configuration based on the application's requirements. Consider factors such as single-acting or double-acting cylinders, telescopic cylinders for limited space, or custom configurations for unique applications. Evaluate the specific needs of the application to select the most suitable cylinder configuration.

8. Maintenance and Serviceability:

- Consider the maintenance and service requirements of the hydraulic cylinder. Evaluate factors such as ease of access for maintenance, availability of spare parts, and the reputation of the manufacturer or supplier in terms of customer support and after-sales service. Choosing a reliable and reputable brand can ensure ongoing support and availability of spare parts when needed.

9. Compliance and Standards:

- Depending on the industry and application, certain compliance standards may need to be met. Consider any industry-specific regulations, safety standards, or certifications that the hydraulic cylinder should comply with. Ensure that the selected cylinder meets the required standards and certifications for the application.

10. Cost and Budget:

- Finally, consider the cost and budget for the hydraulic cylinder. While it is important to select a cylinder that meets the application's requirements, it is also necessary to consider the overall cost-effectiveness. Evaluate the initial purchase cost, long-term maintenance costs, and the expected lifespan of the cylinder. Balancing the cost and quality will help in selecting a hydraulic cylinder that provides the best value for the application.

By considering these factors in the selection process, it becomes possible to choose the right hydraulic cylinder that meets the specific requirements of the application in terms of load capacity, stroke length, operating pressure, speed, mounting, environmental conditions, maintenance needs, compliance, and cost-effectiveness. Proper selection ensures optimal performance, reliability, and longevity of the hydraulic cylinder in the intended application.

China supplier ISO9809-1 Standard 10L 20L 40L 47L 50L Stainless Steel Gas Cylinders with Industrial Gas Arogen Nitrogen   vacuum pump adapter	China supplier ISO9809-1 Standard 10L 20L 40L 47L 50L Stainless Steel Gas Cylinders with Industrial Gas Arogen Nitrogen   vacuum pump adapter
editor by CX 2023-12-09